Modelling Combustion Variability in LPG Injected Engines for Improved Engine Performance at Idle

نویسندگان

  • Chris Manzie
  • Harry C Watson
چکیده

The variability of in-cylinder combustion of gasoline at idle has been investigated previously, culminating in the development of a model relating the past and future indicated torque deviations from the mean at given engine operating conditions of intake manifold pressure, engine speed and spark advance. The developed model has the potential to be used in an idle speed control algorithm to improve vehicle noise vibration and harshness (NVH) at low engine speeds and loads. While environmental considerations have spawned the development of liquefied petroleum gas (LPG) as a viable alternative fuel, adaptation of the variability model to multipoint LPG injected automotive engines is complicated by the fact that the fuel mixture concentrations of propane and butane are subject to wide variations depending on a variety of factors including geographic location and local market pricing. Furthermore, evidence on one engine family suggests that the variability of torque production using LPG injection under cold start conditions is significantly higher than that observed with gasoline injection, a condition that is improved through enhanced modeling of the cyclic torque production process, and subsequent compensation. This paper investigates the development of a model relating past and present indicated torque deviations from the mean at a given engine operating condition in LPG, and explores the variability inherent in the model as a function of temperature. The implication is the model may be incorporated into an idle speed control algorithm, which will provide improved idle speed regulation in multipoint injected LPG vehicles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-Fuelling of a Direct-Injection Automotive Diesel Engine by Diesel-Gas Method

Use of liquefied petroleum gas (LPG) in compression-ignition (C-I) engines has always been considered important in the diesel engineering field. This is due to its easy accessibility and good combustion characteristics. In this paper the application of LPG fuel along with diesel oil in a direct- injection automotive diesel engine is experimentally investigated. In order to convert the pure dies...

متن کامل

Multi-Dimensional Modeling of the Effects of Spilt Injection Scheme on Performance and Emissions of IDI Diesel Engines

One of the important problems in reducing of pollutant emission from DI and IDI diesel engines is trade-off  between soot and NOx. Split injection is one of the most powerful tools that makes the chance to shift the trade-off curve closer to origin.  At the present work, the effect of split injection on the combustion process and emissions of a cylinder IDI diesel engine under the specification...

متن کامل

Numerical study of the effect of fuel injection timing on the ignition delay, performance parameters and exhaust emission of gas/dual fuel diesel engine using Computational Fluid Dynamics

Today, due to the various usage of compression ignition engines in urban transportation, as well as the need to reduce exhaust emissions and control fuel consumption, the use of alternative fuels has become common in diesel engines. Gaseous fuel is one of the most common alternative fuels that can be used in diesel engines. The utilization of alternative fuels in compression ignition engines re...

متن کامل

Modeling the Effects of Combustion Variability for Application to Idle Speed Control in SI Engines

Combustion in the cylinder of a spark ignition engine, particularly under low load conditions, is subject to cycleby-cycle variations due to factors such as mixture quality and quantity and internal exhaust gas recirculation. The major result of this phenomenon is an increase in the variability of indicated engine torque at a given engine operating point. Automotive control problems dealing wit...

متن کامل

Investigation of the effect of piston geometrical parameters on RCCI engine performance based on second law of thermodynamic

The reactivity controlled compression ignition engines have high thermal efficiency and low exhaust emission of nitrogen oxides and soot because of low temperature combustion. In this type of engines, low reactivity fuel is injected to air through intake port and high reactivity fuel is injected into the combustion chamber during compression stroke. The aim of current study is to investigate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003